Protection against aerosolized Yersinia pestis challenge following homologous and heterologous prime-boost with recombinant plague antigens.

نویسندگان

  • Audrey Glynn
  • Chad J Roy
  • Bradford S Powell
  • Jeffrey J Adamovicz
  • Lucy C Freytag
  • John D Clements
چکیده

A Yersinia pestis-derived fusion protein (F1-V) has shown great promise as a protective antigen against aerosol challenge with Y. pestis in murine studies. In the current study, we examined different prime-boost regimens with F1-V and demonstrate that (i) boosting by a route other than the route used for the priming dose (heterologous boosting) protects mice as well as homologous boosting against aerosol challenge with Y. pestis, (ii) parenteral immunization is not required to protect mice against aerosolized plague challenge, (iii) the route of immunization and choice of adjuvant influence the magnitude of the antibody response as well as the immunoglobulin G1 (IgG1)/IgG2a ratio, and (iv) inclusion of an appropriate adjuvant is critical for nonparenteral immunization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague

In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementatio...

متن کامل

Intranasal ProtollinTM/F1-V vaccine elicits respiratory and serum antibody responses and protects mice against lethal aerosolized plague infection

F1-V is a recombinant plague antigen comprising the capsular (F1) and virulence-associated (V) proteins. Given intramuscularly with Alhydrogel, it protects mice against challenge, but is less effective in non-human primates against high-dose aerosolized Yersinia pestis c b F i w ©

متن کامل

A Bivalent Anthrax–Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis

Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine aga...

متن کامل

Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection.

Pulmonary infection by Yersinia pestis causes pneumonic plague, a rapidly progressing and often fatal disease. To aid the development of safe and effective pneumonic plague vaccines, we are deciphering mechanisms used by the immune system to protect against lethal pulmonary Y. pestis infection. In murine pneumonic plague models, passive transfer of convalescent-phase sera confers protection, as...

متن کامل

Inhaled Liposomal Ciprofloxacin Protects against a Lethal Infection in a Murine Model of Pneumonic Plague

Inhalation of Yersinia pestis can lead to pneumonic plague, which without treatment is inevitably fatal. Two novel formulations of liposome-encapsulated ciprofloxacin, 'ciprofloxacin for inhalation' (CFI, Lipoquin®) and 'dual release ciprofloxacin for inhalation' (DRCFI, Pulmaquin®) containing CFI and ciprofloxacin solution, are in development. These were evaluated as potential therapies for in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 73 8  شماره 

صفحات  -

تاریخ انتشار 2005